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Abstract—Convective heat transfer in the concentric vertical annulus filled with a porous medium has been
investigated. Numerical results for the heat transfer are presented for moderate cylinder spacings and for high
temperature differences. Perturbation results for the field variables are supplied which are valid for all
cylinder spacings at low temperature differences. An asymptotic solution is given which is valid for very tall
cylinders and all temperature differences. Finally, this multiplicity of solutions is consociated with a curve fit.
The results are found to be in fair agreement where there is overlap in their independent variables.
Furthermore, there is qualitative agreement with results for the horizontal concentric cylinders and spheres
filled with a porous medium, although the dependence on the aspect ratio leads to some interesting

phenomena.
NOMENCLATURE Subscripts
1 Iy » . . -
A3 aspect ratio of annulus, H/r,; cn, convective and nondimensional ;
Bi, Biot number, hr./k; cond, conduction alone;
Da, Darcy number, K/rZ; i inside :
35,2, J . .
Gr, Gras.hoi? number, gBAT r /v, i, iteration counter :
4, gravitational constant [m s™%]; o, outside or “infinity”;
H, height of annulus [m]; ‘ total, conduction and convection.
h, convective heat transfer coefficient
-2 -17. .
) [Wm K™ Superscripts
J iteration counter; nondi ional ity
K, permeability of porous media [m?*]; . ° d';imgnsmna quantity;
k, thermal conductivity [Wm ™K~ ']; ’ modiied.
Pr, Prandtl number, v/a;
-271.
g grestsgre [I[\I “r,r} 1 1. INTRODUCTION
, eat flow ; .

g heat flux [Wm~2]; THE INCREASING relative cost of energy has led en-
Ra* modified Rayleigh number, gBATKr/(va); gineers to more closely examine measures which may
, s o ; . . . .
Ra, Rayleigh number, gBATr/(va); de(;iregge energyduse. Therm'a] msulat;(on w1fil continue
. radial spatial coordinate [m]; to find increased use as engineers seek to reduce costs.
T dimensional temperature [K]; This work investigates heat transfer in porous thermal
" velocity component in radi a;l direction  Insulation applied within vertical cylindrical annuli in
’ [ms™']; order to provide insight into the mechanisms of this
w velocity ’component in vertical direction form of energy transport and to enable engineers to use

[ms']; insulation more efficiently. In particular, design engi-
y any field variable, either ¥ or 6 neers require relationships between heat transfer,
- vertical spatial coordinate [m]. ’ geometry and boundary conditions which can be

Greek symbols

@, thermal diffusivity [m?s~*];
B, coefficient of cubical expansion [K~'];
s constant of proportionality ;
#, radius ratio, r/r,;
0, dimensionless temperature,
(T'=THWT, =T,
i, absolute viscosity [Nsm™?];
o, density [kgm~3];
VR dimensionless stream function defined in

equation (9).

utilized in cost-benefit analyses to determine the
amount of insulation that will yield the maximum
return on investment.

Since so very little literature exists dealing with free
convective flow in a porous media between concentric
cylinders, free convective flow in enclosures containing
only a simple fluid will first be discussed. The subject of
free convection in enclosures completely filled with a
porous medium will then build upon this base with a
discussion focusing first on the rectangular geometry
and then on annuli.

The subiject of free convection in enclosures contain-
ing only simple fluids was reviewed by Ostrach [1].
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Ostrach emphasized the differences between internal
and external free convective flows and gave consider-
able attention to the simplifying assumption often
considered in the literature that, for the internal flow
region, a central isothermal core exists and this region
is enclosed by a boundary-layer type flow. Of all the
free convection enclosure problems, horizontal cyl-
indrical geometries are probably the most studied.
Powe, Carley and Bishop [2] reviewed all experimen-
tal work for free convection in horizontal isothermal
concentric cylinders. They summarized the data and
its discrepancies, and then reduced the flow in the
annuli to four basic regimes and thereby generated a
starting point for theoretical work.

Powe, Carley and Carruth [3] reported the results
of a finite difference solution for free convection in
horizontal cylindrical annuli. Their work was able to
predict the transition from steady to unsteady flow and
their results showed excelient qualitative agreement
overall. This work has been recently extended by other
authors [4].

Natural convection in enclosed vertical annuli filled
with “simple” fluids has been treated, though not
nearly as thoroughly as horizontal annuli. Gershunig
[5] attempted an analytical treatment. He solved the
governing equations by decoupling momentum and
energy by assuming that velocity terms do not interact
with the energy equation. This approach was un-
satisfactory. Later, Beckmann [ 6] suggested that verti-
cal annuli could be correlated to vertical plates with
limited success. Then Nagendra et al. [7] utilized a
double boundary layer model proposed by Emery and
Chu to obtain acceptable agreement between theory
and experiment. Three different correlations for dif-
ferent categories of annuli were presented and agree-
ment with available experimental data was within 677,

In summary, natural convection in horizontal an-
nuli filled with a simple fluid is well understood. The
works of Powe et al. [2, 3] give a firm base to the
fundamental aspects and subsequent works treat only
very specialized extensions. In contrast, vertical annuli
deserve further treatment and have not been examined
in the complete way [2, 3] as have horizontal annuli.

The investigation of heat transfer in enclosures
containing porous media began with the experimental
work of Verschoor and Greebler [8]. These re-
searchers used an evacuable guarded hot plate ap-
paratus to determine the relative importance of ra-
diation, conduction and convection in enclosures filled
with air and thermal insulation. Verschoor and Greeb-
ler demonstrated that gas conduction is the primary
transport mechanism at low Rayleigh numbers and
that radiation contributes little to the overall heat
transfer in practical building applications (as predicted
by their analytic work). Verschoor and Greebler were
followed by several other investigators interested in
porous media heat transfer in rectangular enclosures
[9-12]. In particular, Bankvall [ 13-15] has published
a great deal of practical work concerning heat transfer
by natural convection in rectangular enclosures com-
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pletely filled with porous media.

Results published by Burns, Chow and Tien [16]
describe a porous media heat transfer flow with a
rectangular geometry which is less idealized than the
preceding works. Additionally, infiltration is al-
lowed. They present results of Nusselt number as a
function of several parameters and find that for high
infiltration rates the dominant heat transfer mech-
anism is due to the enthalpy change of the fluid
blown through the enclosure.

Natural convection in porous media with cylindrical
geometries is not nearly as well studied as the rec-
tangular counterpart. The governing equations and
flow field are significantly more complex in cylindrical
coordinates. Caltagirone [17] and Brailovskaya et al.
[18] have published results for horizontal geometries,
but little in these works concerns heat transfer in
practical flow regimes for thermal insulation. Tien and
Bejan [19] published results for heat transfer between
concentric horizontal cylinders with different end
temperatures. They found the heat transfer to depend
on the Rayleigh number, the geometry, and the
conduction properties of the wall. Burns and Tien [20]
also published theoretical work concerning heat trans-
fer in horizontal concentric cylinders and spheres.

In summary, heat transfer in porous media has
received considerable attention recently, and the speci-
fic topic of transport in thermal insulation has been
approached for several fundamental geometries,
though usually with idealized boundary conditions.
There is a dearth of work, however, in the instance of
vertical cylindrical annuli.

2. THE GOVERNING EQUATIONS

2.1. Busic equations and geometry

The governing equations expressing conservation of
mass, momentum and energy for the problem at hand
are

V-u=0, (1)
— K
u=-—(Vp+ pg), (2)
i
u-V7T =aV3T. (3)

Equation (1) is the incompressible form of the con-
tinuity equation and equation (2) is Darcy’s law for
steady fluid flow in a porous medium. Darcy’s law
applies for Reynolds numbers (based on pore dia-
meter) less than one. Equation (3) is a steady state
formulation of the principle of conservation of energy
with the thermal conductivity assumed to be constant.
Viscous dissipation is negligible while radiation is
approximately accounted for by selecting an appro-
priate value of the experimentally determined thermal
conductivity (which includes radiation).

The geometry under consideration is shown in Fig.
1. In dimensional form, the important geometrical
parameters of the problem are the inner and outer



Convective heat transfer in vertical cylindrical annuli

z =H
= A
1
i ,’;
: l/ porous
h / insulation
i ] {typ.)
i ]
[ r
: |
- i
! i
H 2’2 '
i t
1 ]
1 1
i |
|
|
t
! l
Vol m ot
-, - hat N ~
‘\" : s S R
r= 'ifn
=

FiG. 1. The physical system.

cylinder radii, r; and r,, respectively, and the cylinder
height, H. In nondimensional form, the radius ratio,
= r/r,, and the aspect ratio, 4 = H/r, are the
important geometrical parameters. The nondimen-
sional radial variable, v, varies from # to 1, and the
vertical variable, Z/, varies from zero to A. The two
nondimensional geometrical parameters, the boun-
dary conditions, and the modified Rayleigh number
will determine the heat transfer and the flow field.

Equations (1)-(3) can be written in cylindrical
coordinates to take advantage of the angular sym-
metry of the problem. The following equations are
then obtained:

—a—(ru)+ri(w)=0,

or 0z @

(6)

T
'(g;jj] (7

8T+
— 4w
uér

aT
éz

10 /T +
=Yl ——
rar\ or
The variables in the above four equations are
nondimensionalized as follows:

u w
u = , W= , F=rfr,, 2 =z/r,
a/r, a/r,
@®
g L-To  _ P Pogz
T T, ou/K  oap/K’

Pressure is eliminated by taking the partial de-
rivative of equation (5) with respect to z and the partial
derivative of equation (6) with respect to r. By in-
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troducing a nondimensional stream function defined
as

1w

roor ®
the continuity equation is automatically satisfied and
the variables «' and w' are replaced by the single
variable . Finally, using the Boussinesq approxi-
mation and dropping the primes, the following cou-
pled pair of equations are obtained:

o (1o o 26
Y Gl - —Ra*+Z, 10
r&r(r ér>+622 o (10)
10/ 00\ %0 10900 10930
Sl SR DA At A 1B
ror <r6r>+c?zz rozér rérdz ()

where Ra* is the modified Rayleigh number defined by
Ra* = gBATr K/(av). (12)

The modified Rayleigh number expresses how vigor-
ously the flow is thermally driven compared to how
firmly motion is resisted and can be given as a
product of three nondimensional parameters as
follows:

Ra* = Gr Pr Da, (13)

Ra* being used for brevity and simplicity.

The horizontal boundaries are nonconducting and
the inner vertical boundary is held at a constant elevated
temperature, T,. In the perturbation solution, the
outer boundary is held at a constant lower
temperature, 7. In the numerical and asymptotic
solutions, the outer vertical boundary is allowed to
convect to the ambient at T, by virtue of a constant
heat transfer coefficient, h. As the vertical annulus is
defined to be an enclosure, or sealed, the edges of the
enclosure must constitute a streamline. Hence, the
boundary conditions may be stated mathematically as

¥ (boundaries) = 0,

ig:()at {z=0and 4, all r),
oz

(14)

8(n,zy=1,
0(1, z) = 0 (perturbation solution),

06

—=—Bi 6 (asymptotic and numerical solutions),
or

where
Bi = hr /k (15)

and h is a heat transfer coefficient for convection
outside the cylinder and k is the stagnant thermal
conductivity of the porous medium.
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Solutions to the governing equations are desired
over the full range of practical values of the parameters
of the problem. Hence the radius ratio varies from 0.1
to 0.9 and the aspect ratio varies from 0.5 to 20. The
range of the modified Rayleigh number is determined
using experimental data previously collected. Fournier
and Klarsfeld [21] report that the permeability of
fibrous insulation varies from 2 x 107'® to 200 x
107'°m?. They also report that an effective thermal
conductivity, which includes the effects of gas con-
duction, solid conduction and radiation varies from 3.2
x 1072 10 50 x 107*W™im 1K !, Using these
values for the permeability and thermal conductivity,
the well known properties for air, insulation thick-
nesses up to 1/3m, and temperature differences up to
70K, the modified Rayleigh number may vary as
follows in practical insulation applications:

0 < Ra* < 150, (16)

Equations (10) and (11} are nonlinear, coupled
partial differential equations. After failing to obtain an
exact analytical solution, approximate analytical and
numerical results were sought. Perturbation tech-
niques valid for low Rayleigh numbers were attempted
to garner information when the geometry approaches
limiting values and numerical difficulty is encountered.
An asymptotic solution was obtained that is valid
when the enclosure is tall and narrow for very high
Rayleigh numbers where, again, numerical difficulty is
encountered. Finally, the gaps were bridged with
numerical results. These solutions will be described in
the ensuing sections.

3. PERTURBATION SOLUTION

In the problem at hand, a parameter perturbation
[22] is performed in which the modified Rayleigh
number is perturbed from zero, a value for which the
full problem solution (the log law conduction profile)
is known. To do this, # and y are assumed to be of the
form

0 = 0, + Ra*0; + Ra*20, + ..., (17)

W =1 + Ra*y, + Ra**y, + ... (18)
These series are substituted into the governing equa-
tions (10} and (11} and the boundary conditions,
equations (14} As the modified Rayleigh number tends
to zero all terms not containing #; and ¥, drop out.
The following pair remains:

2 /1é A2

P ( i‘?) + i;«df‘l =0, (19)

cr\r or iz?

e[ a0,\ %0
o (r ‘ ) +0 =, (20)

ror ér cz

The solutions to the above pair are

‘17{10 =G, {21}
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6, =1n r/ln n. 22)

Higher order terms are generated similarly. §, was
obtained by standard separation of variables tech-
niques. A homogeneous solution is obtained and the
inhomogeneous term was developed by inspection. y/,
is given by

------ [z + Az
¥y = 2m ; [2* + 4z]
+r ; sm~{' {‘{f‘:’ (,ar}+f<g{;xr)]i);
n 1
— K {un)
+ [W ILi{ur)+ K l(ur)JDn (23)
where
nr .
B= gty =" {24)
2 A7
v {cgs nr-— 1}
D, = —1 25
K. () — 1(#**!'} I
1# i)
I{un)
and
2 A2
'l]n'?"3 g (cosnn — 1}
D, = K. . (26)
- 1
Kitun} I I{um)
The equation for 8, is
18 /ro8, a0, 104, 08,
Iz [z‘r( or )+ 222 r 8z ér @n

0, was obtained using the same techniques used for i/,
and is given by

/ 2, 2
0, = (In r)* ( ~ %L + Af)
d bebived
+ 3 cos T{Enimf{}{gr}+ B, Inr K, {ur)]
n=1 *
+ 3l v = T80 | com s
- i Y (B,)
+ C n Yo n ) - Jo n
ngl * L. (ﬁ r) Jo(ﬂn) (ﬁ r)]
x [~ cosh (B zy—tanh (f,4) sinh (B,2)]
+ Z Co, 1 K fury — {(‘u}} IO(;;r)]ws uz. (28)
=i - 0
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Here the constants y,, §,, E,, B,, A, C3, Ca, and C,,
are functions of 7 and A. Solutions for 8, and ¥, were
not obtained because the solutions for 8, and ¥, are so
complex that the equations for 8, and ¥, would be
extremely difficult to solve. Additionally, it was found
to be very expensive to obtain the eigenvalues and to
sum the series in equations (23) and (28). The extrapo-
lation to ¥, and 6, indicated that we couldn’t afford to
perform the computations even if we had the solutions.
The velocities, u;, and w;, can be obtained using
equation (19) and are given, together with the con-
stants in equations (28) in ref. [24].
The Nusselt number, Nu, defined as follows:

A
Nu:g—f"—‘f‘-:innj régdz
cr

]

29

cond

is one when calculated using the first two terms of
equation (17). Thus, the first order contribution to the
heat transfer is zero because of the vertically anti-
symmetric nature of #,. This has been observed in the
past [ 20] with the result that at low Rayleigh numbers,
the heat transfer varies at least quadratically with
Rayleigh number.

The absence of Nusselt number results for the
perturbation solution led to a comparison of tempera-
ture fields to assess the accuracy of the method. The
numerical results were taken as ground truth. Since the
cost of a complete error analysis was untenable, two
cases were considered ; Ra* = 30 and Ra* = 50for Bi
= o, = 0.5and 4 = 5. At Ra* = 35and r = 0.65
{(where the errors are representative averages of the
field), the error varies from 0.0005%; at z = 0.15 to 8%
at Z = 2.5. At Ra* = 50, the error varies from 1.3% at
z = 0.15 to 15.1% at z = 5. It appears, therefore,
that the perturbation solution is accurate enough for
engineering purposes below Ra* = 35.

4. ASYMPTOTIC SOLUTION

For a vertical annulus completely filled with a
porous medium the governing equations are greatly
simplified as we let A — >c. Indeed, this should be a
valid approximation for many practical insulation
systems. Because the height of the annulus becomes
infinite, there can be no change in fundamental
quantities with height. All derivatives with respect to z
go to zero. The governing pair, equation (10) and (11),
becomes

18, 1oy, a6,
SIEA L TVA R A, 30
rort oo o (30)
18 (rof,
- =0 31
r(’?r(@r ) 31)

The appropriate boundary conditions are:

wA (’73 Z) = 0,
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WA(la Z) = 0’
Gd{rfs Z} = I’
_ =16,
GA(I, Z) = Bi “‘g;“(l, Z). (32)

The heat flow boundary condition at r = | is more
general than that posed in the perturbation problem.
The boundary conditions stated in equations {(32)
reduce to the perturbation boundary conditions in the
limit as the Biot number tends to infinity. The
temperature of the outer cylinder now assumes a value
greater than zero depending upon the internal flow
and the Biot number. The solutions to equations
(30)—(32) are as follows:

v . Ra* Bir? ) 1 +Cr2+D
=+4+—|Inr-—- - ,
4 2(1 — Bilnn) 2 ‘2 !
(33)
0,= ! [- Bil 1
A_I—Bilnn fnr +1] (34)
LI
Py — —+ =
_ Ra*Bi 2 2 — Ra* Bi
' 1—-Bilng -1 1-351:;;;{2]’
35)
2 ? 1
Iny — —— + —
o __ RaBi 1+” n=g s 56
T2t — Bilng)| 2 n—1

Using the definition of y, given by equation (9), w , can
be obtained. The result is

Ra* Bilnr

A= T Bilg "

(37

Using w, and 60, it is possible to estimate the
convective contribution to the heat transfer in annuli
with a large but not infinite aspect ratio, 4. There are a
number of ways in which this can be done. This work
employs a method successfully introduced by Bat-
chelor [23]. In short, the technique assumes that the
nondimensional convective contribution to heat trans-
fer in “tall” annuli is proportional to the convected
energy, i.e.

i
Q=7 j w0 4 2rrdr

n

(38)

where the constant of proportionality, y, is to be
determined by comparison to other solution tech-
niques or experimental data. Evaluation of the integral
is complicated but the result obtained, after substitut-
ing into the definition of the Nusselt number is
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Rﬂ‘m
Nuy=14 47
12 152 2
n*lnn 1 1
+(C,+ |~ =~ |y~ 39
3 (€, )[ 3 2( 2) (39)
X
Iny
for Bi = =, and
3 *
Ns{A:i—;Ra

N {[ Bi (;ﬁn%) Gl -9 i}
1—Bilny 2 A1 — Bilny)
Bi
* {1 — Bilny *

1 o9/ 1
for Bi < .

Equation (40} readily reduces to equation {39} as the
Biot number tends to . The relations for Nu, are
valuable as they allow prediction of heat transfer from
simple analytical expressions for large aspect ratio
geometries. The shape of Nu, is very similar to the
shape of the Nu {5} plots presented in the numerical
results section, indicating good qualitative agreement.

Quantitative agreement is obtained by using least
squares methods in comparing Nu, to numerical
solution results. Least square methods enable a selec-
tion of a value for y which minimizes the variation of
the Nusselt number. This procedure has been applied
to over 50 numerical results for Nusselt numbers of §
and greater and y has been determined to be 0.57.

The Nusselt number results obtained from the
asymplotic and numerical schemes have been com-
pared for all 4 > 1. For the asymptotic results, the
maximum error is observed for the minimum values of
# and the smaller values of A at all Ra*. The results
agree to better than 11%, for all cases where both 4 >
0.1. Almost all results agree to within 5%, The variation
of error is illustrated for the representative case of Ra*
= 100 and 4 = 5 as follows — the error varies
smoothly with # from 0.5% at n = 0.9 to 5.3% aty =
0.2.

C.Bi |
1 —Bilny 1-Bilny

5. NUMERICAL SOLUTION

This work utilizes the two previously discussed
analytic efforts as well as a finite difference scheme to
obtain results for heat transfer as a function of
geometry, Biot number, and modified Rayleigh num-
ber. Finite differences were employed because the
boundary conditions were unambiguous and smooth
and the finite difference method is known to be
successful on very similar problems, specifically na-
tural convection in enclosures and natural convection
in porous media filled enclosures [20].

3.1. The finite difference approximation scheme
Equations {10) and (11) were formulated in central
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difference form. A regular grid was used. Boundary
mirroring was used to satisfy the adiabatic conditions
and second order one-sided differencing was used to
calculate temperature gradients on the vertical boun-
daries. This formulation has been utilized in a suc-
cessive over-relaxation scheme. In this scheme, f and Y
are given initial approximate values and the scheme
solves for 8 and ¢ successively until a determined
residual is reached.

In the investigation described above, runs using
grids as large as 50 x 50 were sometimes used, but for
the bulk of the output, gridsbetween 16 x 16and 30 x
30 were used. Fifteen exploratory cases indicated that
accuracy is determined by several factors besides grid
size. The values of 4, n, and Ra* all combine in a
complex manner to determine the grid size required to
obtain a given accuracy. Most results at Ra* < 50 were
accurate to within about 2% ; the more inaccurate runs
are those where the Nusselt number peaks versus .
Results at Ra* = 150 are within about 8% of the
converged value, and again, only the results near the
maximum Nusselt number are less accurate, though all
are accurate to at least 12%,. All results at Ra* = 100
are accurate to within 8%. The series of runs was
prohibitively expensive, and the results shown are
converged to the maximum limit allowed by our
budget.

The convergence properties of the successive over-
relaxation scheme were investigated by fixing 5, A, Ra*
and the grid size and varying the convergence para-
meter, RESMAX. RESMAX, the maximum norma-
lized change in the temperature on the stream function
over every grid point is given by

Yir. z}

. (41
Y10 2} @

RESMAX = 1:{ —

When the change between the new and old values of
the temperature or stream function normalized with
the old value, is smaller than RESMAX, then the
convergence criterion is satisfied. The temperature at
an arbitrary grid point in the upper center of the
enclosure was converged when RESM AX was equal to
1.0 x 107% Thus in all subsequent runs RESMAX
was set to 1.0 x 107% and the temperature and stream
function at every grid point were forced to satisfy the
convergence criterion,

Figures 2-5 display results of the numerical scheme
for a Biot number of infinity. These results are
tabulated in ref. [24]. The Nusselt number is presented
as a function of radius ratio, », with the aspect ratio, 4,
as a parameter for Rayleigh numbers of 35, 50, 100 and
150. Numerical results are shown as solid points
while asymptotic results are shown as open points,
Asymptotic results are shown for A > 2. The asymp-
totic approximation is invalid for small A. Indeed, it is
surprising that the asymptotic results agree as well as
they do even at A = 2. Due to budget limitations (the
results shown herein cost several thousands of dollars)
the numerical resulis are not as plentiful as is desirable.
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This is somewhat ameliorated by the curve fit pre-
sented later.

In each graph, the Nusselt number tends to one, the
pure conduction value, as # tends to 0 and 1. The
former result is due to the fact that as 5 goes to zero, the
area for heat liberation tends to zero. The latter result
is due to the fact that as n goes to unity, the conductive
resistance goes to zero. The heat transfer increases with
modified Rayleigh number. This must occur because,
as previously described, the modified Rayleigh number
is the driving force for convective heat transfer. The
Nusselt number dependence on aspect ratio 4 is
presented most clearly for Ra* = 35, Forp'snear Oand
1 the Nu dependence on 4 appears as a fairly simple
inverse power law dependence but for  between 0.2
and 0.6 the dependence is more complex. In this region,
Nu increases and then decreases with decreasing A for
a given #, so that the n for which Nu is a maximum for
each 4 moves from abouty = 0.2for 4 = 10ton =
045 for A = 0.5. This result may be explained by
considering the flow geometry. For smaller A4, the
pathlines are long in the horizontal direction and short
in the vertical direction, where heat transfer occurs.
Long pathlines make the flow rate low and decrease
the convective heat transfer. As 4 gets small, then, Nu
goes to unity. However, as A gets large, the convective
heat transfer approaches a limit because fluid rising
next to the inner wall cannot get hotter than the inner
wall itself. Conduction increases with increasing A4 so
that as 4 gets very large Nu goes to one once again.
Hence, Nu vs A must go through a maximum.

Figures 6 and 7 depict streamlines and isotherms
generated by the numerical scheme for Ra* = 100,
A = 2.0 and 5 = 02. The isotherms show little
resemblance to the vertical isotherms of the con-
duction solution or the nearly vertical result of the
perturbation solution. As in the perturbation solution,
the streamlines encircle a point that is shifted to the
outside of the annulus. However, the streamlines are
no longer symmetrical about z = A/2. The vortex or
central flow point is shifted noticeably above z = 4,2
and there is a decidedly higher flow rate in the upper
outside corner and the lower inside corner. The
symmetry of the perturbation solution forced the
vortex to be centered along z = A/2. Additional terms
in the perturbation solution, if well behaved, should
move the vortex center upward and outward to its
correct position. The upper inside and lower outside
regions are relatively stagnant. As fluid rises along the
inner vertical wall and warms, a higher pressure region
develops in the upper inside corner. The flow must turn
toward the outside away from the corner, leaving a
large fairly stagnant region. As the flow approaches the
outside wall it cools and descends abruptly. Another
high pressure stagnant zone develops in the lower
outside region and the flow turns toward the inside as
it falls. In the lower inside region the fluid warms and
abruptly begins to rise. The isotherms depicted in Fig.
8 can be explained with the aid of the flow. In the upper
region the flow affects the conduction temperature the

1761

Nu

F1G. 2. The variation of Nusselt number with radius ratio for
Ra* = 35,

FiG. 3. The variation of Nusselt number with radius ratio for
Ra* = 50.
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F1G. 4. The variation of Nusselt number with radius ratio for
Ra* = 100.

same way blowing from the inner to outer wall would.
The isotherms must shift toward the outside. Where
the conduction profile would have given 8 = 0.80,
blowing gives a larger value, for example 0.85 or 0.9.
The temperature field in the lower region of the
enclosure resembles blowing from the outer to inner
wall, and the isotherms shift toward the inner wall.
The numerical scheme allows either the convective or
the isothermal boundary condition to be applied at the
outer vertical boundary. The results for an isothermal
outer boundary have been presented. Cost consider-
ations have limited the number of finite Biot results,
but as there are more than fifty of these resuits, there
are enough to obtain a good idea of the effects. The
majority of the results are at Biot numbers of 30 or
larger, where the Nusselt number is more than ninety
percent of its value for Bi = . Lower Biot number
results were extremely expensive, partly because the
algorithm’s first guess was poor in this region and
partly because the algorithm’s convergence properties
were weaker with the finite Biot number boundary
condition. The results indicate that decreasing the Biot
number decreases the Nusselt number. An infinite Biot
number, or an isothermal outer wall, implies an infinite
heat transfer coefficient on the outer vertical wall. An
infinite h is required to keep the entire wall at the
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Nu

Fic. 5. The variation of Nusselt number with radius ratio for
Ra* = 150.

I T

FIG. 6. Streamlines for n = 0.2, 4 = 2, and Rg* = 100.
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temperature of the surrounding fluid, the fluid outside
of the vertical annulus. As h decreases from infinity,
the outer wall grows warmer because it does not
transfer heat to the surrounding fluid as well. An
increase in the outer wall temperature reduces the
effective modified Rayleigh number in the enclosure
and therefore must decerease the heat transfer because
the Rayleigh number is the parameter which drives the
convective heat tranfer in the enclosure. As the outer
wall warms up when the Biot number decreases from
infinity, it does not remain isothermal. The outer wall

14 T T T

Approximation
o Egs. (42) to {44}

@ Numerical W

71=02 A=05,

1.2

Nu 1O Ra® = 50

08 |-

Approximation is
the lower point

0.6 N — 1 1
0 0.25 0.50 0.75 1.00

1/8i

F1G. 8. The variation of the Nusselt number with the inverse
of the Biot number.
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warms more near the top of the annulus because the
fluid in the upper region inside the annulus is warmer
and transfers heat to the outer wall more strongly as it
vigorously impinges on the surface. This result causes
the outer boundary as well as the fluid in the annulus
to be thermally stratified. Thermal stratification op-
poses the fluid motion in the enclosure.

The dependence of the Nusselt number on the Biot
number is illustrated in Fig, 8. The independent variable
is 1/Bi. The decrease in Nusselt with Biot number is not
appreciable until the Biot number is less than 50. Thus,
for Biot numbers of 50 to o, the heat transfer is very
near the isothermal outer wall heat transfer. For Biot
numbers less than about 4, Nu is less than 1 because it
is still normalized with the isothermal outer wall
conduction solution. As the Biot number gets very
small, it decreases the heat transfer less and less
because the temperature difference across the en-
closure is reduced resulting in a decrease in the flow.
Thus, the internal heat transfer tends to the pure
conduction solution as the Biot numtber is decreased.
Additionally, stratification becomes more pronounced
which further inhibits flow.

A method has been developed which uses the Bi =
» numerical results to predict the Bi < > numerical
results to within about 2%,. The heat transfer in the
annulus can be expressed in nondimensional form as

(1-6,)Nu,

- ~Bi0,
In »

(42)

where Nu , is the Nusselt number for an infinite Biot
number evaluated at a modified Rayleigh number
reduced to account for the increased outer wall
temperature, 0, Finite Biot number results can be
approximated to within 2% using this relation by
following the procedure outlined below.

Choose 3, A, Ra* and Bi. After guessing 6,, reduce
the modified Rayleigh number to account for the
increased outer wall temperature with the following
relation:

Ra¥,=Ra* (1 -0,). 43)

Using Ral,, interpolate in the infinite Biot results for a
Nusselt number prediction. Use this Nu . value to
derive a new 6, from equation (42). With the new 0, a
new reduced modified Rayleigh number can be ob-
tained and the process can be iterated until 6,, Rak,
and Nu, converge. Nuy is then calculated using

Nug =Nu, (1-10,). (44)

This has been done and is shown as the open points on
Fig. 8. The results converged after only 3 iterations to
values within 29 of the numerical results. In fact there
is so much overlap that the open points (lower) can
barely be discerned from the solid points.

Least squares methods have been used to approxi-
mate the Nusselt number’s dependence on 5, 4 and
Ra* with simple functions for design purposes. Both
the A and Ra* dependence were fit well to simple
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power law functions. The n dependence was fitted to
ay [n(1 — myJret. 45)

The specific function is given in its entirety in the
Conclusions section. Results for these correlations
have been compared to the numerical results. The
agreement is always within 5%,

Some results from the asymptotic solution (open
points} are compared to numerical solution results in
Figs. 2-5. The asymptotic solution is accurate to 6%
for all n greater than 0.3 and 4 > 2. The asymptotic
solution is poor at smaller 5, though it tends to the
appropriate limit as  — 0 but allows reasonable
resultsforn > 0.3. For 4 < 2, the asymptotic solution
diverges from the numerical results. This is to be
expected because 4 < 2 violates the basic assumptions
in the approximation.

6. CONCLUSIONS

The governing equations for free convection in
vertical cylindrical annuli were formulated in differen-
tial form as the first step towards obtaining useful
information regarding heat transfer in thermal in-
sulations. The governing equations were then reduced
to a coupled pair of nonlinear equations involving a
single parameter, the modified Rayleigh number. The
application of the boundary conditions introduced the
radius ratio, the aspect ratio and the Biot number and
the problem was then one involving five parameters.
Because the critical modified Rayleigh number is zero,
and solutions were sought for modified Rayleigh
numbers between 0 and 150.

Perturbation methods were applied and yielded first
term corrections for the stream function and tempera-
ture to the pure conduction case. Unfortunately,
higher order terms were too difficult to obtain and the
first term corrections could not give results for Nusselt
number due to antisymmetry about z = 4/2. However,
useful results for the flow field were obtained.

Asymptotic methods yielded useful resultsfor 4 > 5
and # > 0.2. Qualitative agreement was not obtained
for n < 0.2 because of the assumptions required for the
asymptotic technique. However, as many practical
problems involve an 4 > 5, the method’s results are
quite useful.

Numerical methods generated results for a wide
range of #, 4 and Ra*. Some results for Biot numbers
between 1 and 500 were also obtained. Simple cor-
relation equations were developed to relate the Nusselt
number to #, 4 and Ra*. A simple iterative technique
for obtaining results at finite Biot numbers from results
for Bi = ¥ was presented.

Several results of the present work display some
provocative similarities to two important preceding
works. The Nusselt number results of Burns and Tien
[20] for concentric horizontal annuli show a very
similar radius ratio dependence. The curve fit for the
numerical results has a nearly identical form despite a
great difference in flow field between the two problems.
However, many of the constants are very different. The
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Nusselt number’s dependence on Ra*, though, is an
exception. In both problems, the Nusselt number
seems to go as Ra*? at the lower Rayleigh numbers but
as low as Ra*'"! at the higher Rayleigh numbers.

The results of Batchelor [23] for free convection of a
simple fluid between vertical plates are similar to those
of the present problem in several respects. In both
works, the first term of the perturbation solution did
not contribute to heat transfer, and in both problems,
the Rayleigh or modified Rayleigh number depen-
dence goes as the second power for the small (less than
50) Rayleigh numbers.
The preceding work
conclusions:

(1) The Nusselt number, and therefore the heat
transfer, in vertical concentric cylindrical annuli con-
taining porous insulation depends on radius ratio,
aspect ratio, modified Rayleigh number and Biot
number, all nonlinearly.

{2) The dependence of the Nusselt number on the
modified Rayleigh number is nearly quadratic for Ra*
< 50, as was expected when the terms in Ra* in the
perturbation solution did not contribute to heat
transfer by virtue of their antisymmetry about z = A/2.

(3) For a given Rayleigh number, a critical height
occurs at which the Nusselt number is a maximum.
This occurs because the Nusselt number is normalized
with conduction, 4/ln n. Conduction increases linearly
with 4, while convection approaches a limiting value
and therefore increases much more slowly for larger
A’s.

(4) A relation of the following form fits the Bi = «
results well:

leads to the following

*

Ra
Nu=1+a,[n{l —n))e "

A
for A = 1,0 < Ra* < 150 and all  (46)
a, = 02196,
a, = 1.3337,
a; = 3.7020,
a, = 0.92958,
as = 1.1682.

The correlation for the Nusselt number can be exten-
ded to the use where Bi < o¢ by using the procedure
outlined in equations (42)—(44). Results were shown to
be accurate to about 2%,

(5) For Biot numbers of 50 or larger, the heat
transfer is within 5% of the Bi = = value. However,
Biot numbers as low as 0.05 are required to simulate
natural convection on the outer vertical wall for all
practical applications.

(6) The Nusselt number is a maximum for a given 4
and Ra* at a particular #. This result is due to the fact
that Nu must go to unity both as n goes to zero,
because the area for heat liberation tends to zero, and
as y goes to one, because the conductive resistance
tends to zero. A maximum must therefore occur at an
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intermediate value of . The value of » at the maximum
Nusselt number is observed to be ()., = 0.25for 4 >
I while {(n).... increases continuously with decreasing 4
for 4 < L.

(7) For Bi = =, no critical insulation thickness
exists at which heat transfer is a maxiroum or mini-
mum, Despite the existence of maximum Nusselt
numbers, heat transfer does not peak because of the
variation of the conduction solution with 5. For Biot
numbers less than infinity, a maximum is expected to
exist as occurs in the well known problem with closed
cell or solid insulation.

Further studies should utilize a more sophisticated
algorithm to enable investigation of problems with
more realistic boundary conditions ie. lower Biot
numbers. The temperature dependence of the proper-
ties should also be taken into direct consideration.
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CONVECTION THERMIQUE DANS UN ESPACE ANNULAIRE VERTICAL EMPLI D'UN
MILIEU POREUX

Résumé-—On étudie la convection thermigue dans un espace annulaire vertical et concentrique, empli d’un
milieu poreux. Des résultats numériques sont présenteés pour des espaces modérés et pour des différences de
température élevées. Des résultats de perturbation pour les variables de champ sont fournis pour tous les
espaces de cylindre et pour des faibles différences de température. Une solution asymptotique est donnde qui
est valable pour des grands cylindres et n'importe quelle difiérence de tempsrature, Les résultats sonten bon
accord 12 ou il y a recouvrement des variables indépendantes. De plus i ¥ a un accord guantitatif avec Ies
résultats connus pour les cylindres concentriques horizontaux et les sphéres remplis avec un milieu poreux, et
la dépendance au rapport de forme conduit 4 des phénoménes intéressants.

KONVEKTIVER WARMETRANSPORT IN EINEM MIT POROSEM MATERIAL GEFULLTEN
SENKRECHTEN ZYLINDRISCHEN RINGSPALT

Zusammenfassung—Es wurde der konvektive Wirmetransport in einem mit pordsen Material gefillten
vertikalen Ringspalt untersucht. Numerische Ergebnisse fiir den Wirmetransport in zylindrischen Rdumen
mit miBigem Wandabstand und hohen Temperaturunterschiedenwerden angegeben. Stérungslosungen fir
die FeldgréBen werden ermittelt, die fiir alle Wandabstiande bei kleinen Temperaturunterschieden giiltig
sind. Eine asymptotische Ldsung wird angegeben, die fir sehr groBe Zylinder und alle
Temperaturdifferenzen giiltig ist. SchlieBlich wird diese Vielzahl von Losungen durch eine Ausgleichskurve
zusammengefaBt, Bs wurde gefunden, daB die Ergebnisse in guter Ubereinstimmung sind, wo sich ihre
unabhingigen Variablen Gberlappen. AufBerdem besteht qualitative Ubereinstimmung mit verSffentlichten
Ergebnissen fiir ebene konzentrische Zylinder und mit pordsem Material gefiilte Kugein, obwohl die
Abhingigkeit vom Lingen/Durchmesser-Verhdltnis zu einigen interessanten Phdnomenen fithrt.

KOHBEKTWBHBIH TENJONEPEHOC B BEPTUKAJIBHBIX HMIHHAPUYECKHX
KOJBIEBBIX KAHAJIAX, 3ANOJHEHHBIX MOPUCTOR CPELONH

Awnoranus—ITpoBeeHo HCCIeJOBAHKE KOMBEKTUBHOTO TCIJIONEPEHOCA B KOHUEHTPUYECKOM BEPTHKA-
ABHOM KOJILLHEBOM KaHalC, 3aNIOMAHCHHOM NOPUCTBIM BEIUIECTBOM. HMHCICHHBIC pe3ynbTaTel no
TENNONEpeHOCY NPHBENEHH! AN CAydack HEOONBIIMX 3330POB MOXIY UHIHHAPaMH U Sonbuinx
paswocte#t Temnepatyp. [IpencTamieMsl PACCMHTAHHBIC MO TEOPHUH BOIMYLUCHUE 11078 OCHOBHBIX
IEPEMEHHBIX, KOTODHIE NPHMEHUMbL IS MoGsIX 3a30POB MEKAY HHIHHIpaMu H HeBOALUINX
paskoctedt temneparyp. [aHO Takke aCHMUTOTHYECKOS DEUICHHE, CHPABEAIMBOC ANY UHAMHIPOB
Sonpioll BeicoThE npu mobmX pazHOCTAX Temueparyp. Kpome TOro, BCH COROKYIHOCTE DOIHCHUH
NONTBEPKIARETCS COBNAZSHHEM ¢ okenepumenTansrol xpmsoil. [loKasamo, ¥TO PE3YABTETH XODOUIO
COTMACYIOTOS B TOM Cy4Se, KOTHA HMEET MeCTO HRROWCHHE HEIABMCHMBIN NCDEMEHHLIX. Kpome
TOrO, NONYYEHO KAYECTBEHHOE COPMACHE C M3BECTHHIMH DCIYALTATAMH A9 TOPMIOHTAABHBIX KOH-
LCHTPHYCCKUX HUAREAPOR M CHEP, JANONHEHHMX DOPHCTOH Cpenoil, TIpHYEM 3ABHCHMOCTR npousced
OT OTHOINCHHR PAAKYCA X BHICOTE HHINHAPA NPHBOIHT K HEKOTOPHIM MHTEPECHBIM ABACHHAM.



