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Abstract-Convective heat transfer in the concentric vertical annulus filled with a porous medium has been 
investigated. Numerical results for the heat transfer are presented for moderate cylinder spacings and for high 
temperature differences. Perturbation results for the field variables are supplied which are valid for all 
cylinder spacings at low temperature differences. An asymptotic solution is given which is valid for very tall 
cylinders and all temperature differences. Finally, this multiplicity of solutions is consociated with a curve fit. 
The results are found to be in fair agreement where there is overlap in their independent variables. 
Furthermore, there is qualitative agreement with results for the horizontal concentric cylinders and spheres 
filled with a porous medium, although the dependence on the aspect ratio leads to some interesting 

phenomena. 

NOMEN~LA~RE Subscripts 
aspect ratio of annulus, H/r,; 
Biot number, hr,/k; 

Darcy number, K/t-i ; 
Grashof number, g/IAT rd/v2 ; 
gravitational constant [m s-‘3; 
height of annutus [m]; 
convective heat transfer coefficient 

iteratiii FZ!tLr ; 
CW m 

permeability of porous media [m’] ; 
thermal conductivity [W m-’ K-l]; 
Prandtl number, v/a; 
pressure [N m-‘1; 
heat flow [W] ; 
heat flux [W m-'1 ; 
modified Rayleigh number, gfiATKr,/(va); 
Rayleigh number, g/3ATr:/( vtl) ; 
radial spatial coordinate [m] ; 
dimensional temperature [K] ; 
velocity component in radial direction 

[ ms-‘1; 
velocity component in vertical direction 

[ rns-‘1; 
any field variable, either $ or 0; 
vertical spatial coordinate [ml. 

cn, convective and nondimensional; 
cond, conduction alone ; 
1, inside ; 
J, iteration counter ; 
0, outside or “infinity”; 
total, conduction and convection. 

Superscripts 

nondimensional quantity; 
* , modified. 

THE INCREASING relative cost of energy has led en- 
gineers to more closely examine measures which may 
decrease energy use. Thermal insulation will continue 
to find increased use as engineers seek to reduce costs. 
This work investigates heat transfer in porous thermal 
insulation applied within vertical cylindrical annuli in 
order to provide insight into the mechanisms of this 
form of energy transport and to enable engineers to use 
insulation more efficiently. In particular, design engi- 
neers require relationships between heat transfer, 
geometry and boundary conditions which can be 
utilized in cost--benefit analyses to determine the 
amount of insulation that will yield the maximum 
return on investment, Greek symbols 

thermal diffusivity [m* s-l] ; 
coefficient of cubical expansion [K _ ‘1; 

constant of proportionality; 
radius ratio, r,/r,; 

dimensionless temperature, 

(T - T&‘(Ti - To); 
absolute viscosity [N s m-'1 ; 
density [kgme3]; 
dimensionless stream function defined in 
equation (9). 

I. INTRODUCTION 

Since so very little literature exists dealing with free 
convective flow in a porous media between concentric 
cylinders, free convective flow in enclosures containing 
only a simple fluid will first be discussed. The subject of 
free convection in enclosures completely filled with a 
porous medium will then build upon this base with a 
discussion focusing first on the rectangular geometry 
and then on annuli. 

The subject of free convection in enclosures contain- 
ing only simple fluids was reviewed by Ostrach [l]. 

17.55 
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Ostrach emphasized the differences between internal 
and external free convective flows and gave consider- 

able attention to the simplifying assumption often 
considered in the literature that, for the internal flow 

region, a central isothermal core exists and this region 
is enclosed by a boundary-layer type flow. Of all the 
free convection enclosure problems, horizontal cyl- 
indrical geometries are probably the most studied. 
Powe, Carley and Bishop [2] reviewed all experimen- 

tal work for free convection in horizontal isothermal 
concentric cylinders. They summarized the data and 
its discrepancies, and then reduced the flow in the 
annuli to four basic regimes and thereby generated a 
starting point for theoretical work. 

Powe, Carley and Carruth [3] reported the results 
of a finite difference solution for free convection in 
horizontal cylindrical annuli. Their work was able to 
predict the transition from steady to unsteady flow and 
their results showed excelient qualitative agreement 

overall. This work has been recently extended by other 
authors [4]. 

Natural convection in enclosed vertical annuh filled 
with “simple” fluids has been treated, though not 
nearly as thoroughly as horizontal annuli. Gershunig 

[5] attempted an analytical treatment. He solved the 
governing equations by decoupling momentum and 
energy by assuming that velocity terms do not interact 
with the energy equation. This approach was un- 
satisfactory. Later, Beckmann [6] suggested that verti- 

cal annuli could be correlated to vertical plates with 
limited success. Then Nagendra er al. [7] utilized a 

double boundary layer model proposed by Emery and 
Chu to obtain acceptable agreement between theory 

and experiment. Three different correlations for dif- 
ferent categories of annuli were presented and agree- 
ment with available experimental data was within 6%. 

In summary, natural convection in horizontal an- 
nuli filled with a simple fluid is well understood. The 

works of Powe et a[. [2, 31 give a firm base to the 
fundamental aspects and subsequent works treat only 
very specialized extensions. In contrast, vertical annuli 
deserve further treatment and have not been examined 
in the complete way [2, 31 as have horizontal annuli. 

The investigation of heat transfer in enclosures 
containing porous media began with the experimental 
work of Verschoor and Greebler [S]. These re- 

searchers used an evacuable guarded hot plate ap- 
paratus to determine the relative importance of ra- 
diation, conduction and convection in enclosures filled 
with air and thermal insulation. Verschoor and Greeb- 
ler demonstrated that gas conduction is the primary 
transport mechanism at low Rayleigh numbers and 
that radiation contributes little to the overall heat 
transfer in practical building applications (as predicted 
by their analytic work). Verschoor and Greebler were 
followed by several other investigators interested in 
porous media heat transfer in rectangular enclosures 

[9- 121. In particular, Bankvall [ 13- 151 has published 
a great deal of practical work concerning heat transfer 
by natural convection in rectangular enclosures com- 

pletely filled with porous media. 

Results published by Burns, Chow and Tien [16] 
describe a porous media heat transfer flow with a 
rectangular geometry which is less idealized than the 
preceding works. Additionally, infiltration is al- 

lowed. They present results of Nusselt number as a 
function of several parameters and find that for high 
infiltration rates the dominant heat transfer mech- 
anism is due to the enthalpy change of the fluid 
blown through the enclosure. 

Natural convection in porous media with cylindrical 
geometries is not nearly as well studied as the rec- 

tangular counterpart. The governing equations and 
flow field are significantly more complex in cylindrical 

coordinates. Caltagirone [ 171 and Brailovskaya et al. 
[lS] have published results for horizontal geometries, 
but little in these works concerns heat transfer in 
practical flow regimes for thermal insulation, Tien and 
Bejan [19] published results for heat transfer between 
concentric horizontal cylinders with different end 

temperatures. They found the heat transfer to depend 
on the Rayleigh number, the geometry, and the 
conduction properties of the wall. Burns and Tien [20] 
also published theoretical work concerning heat trans- 

fer in horizontal concentric cylinders and spheres. 

In summary, heat transfer in porous media has 
received considerable attention recently, and the speci- 

fic topic of transport in thermal insulation has been 
approached for several fundamental geometries, 
though usually with idealized boundary conditions. 

There is a dearth of work, however, in the instance of 
vertical cylindrical annuli. 

2. THE GOVERNING EQUATIONS 

2.1. Basic equutiom unrl geometry 

The governing equations expressing conservation of 

mass, momentum and energy for the problem at hand 

are 

v u = 0, (1) 

” = -5 (Vp + pg), 
P 

u.VT =cLV’T. (3) 

Equation (1) is the incompressible form of the con- 

tinuity equation and equation (2) is Darcy’s law for 
steady fluid flow in a porous medium. Darcy’s law 
applies for Reynolds numbers (based on pore dia- 
meter) less than one. Equation (3) is a steady state 
formulation of the principle of conservation of energy 
with the thermal conductivity assumed to be constant. 
Viscous dissipation is negligible while radiation is 
approximately accounted for by selecting an appro- 
priate value of the experimentally determined thermal 
conductivity (which includes radiation). 

The geometry under consideration is shown in Fig. 
1. In dimensional form, the important geometrical 

parameters of the problem are the inner and outer 
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FIG. 1. The physical system. 

cylinder radii, Y; and r,,, respectively, and the cylinder 
height, H. In nondimensional form, the radius ratio, r) 
= ri/ro, and the aspect ratio, A = HJro, are the 
important geometrical parameters. The nondimen- 
sional radial variable, r’, varies from q to 1, and the 
vertical variable, z’, varies from zero to A. The two 
nondimensional geometrical parameters, the boun- 
dary conditions, and the modified Rayleigh number 
will determine the heat transfer and the flow field. 

Equations (l)-(3) can be written in cylindrical 
coordinates to take advantage of the angular sym- 
metry of the problem. The following equations are 
then obtained : 

, (6) 

(4) 

(5) 

(7) 

The variables in the above four equations are 
nondimensionalized as follows : 

O= 2, p c-f-+-. T-T , PoYz 

Ti - T, wlK VlK 

Pressure is eliminated by taking the partial de- 
rivative of equation (5) with respect to z and the partial 
derivative of equation (6) with respect to r. By in- 

troducing a nondimensional stream function defined 
as 

- i a+4 ,ari/ --= 
r’ N 

w Z = r’d 

the continuity equation is automatically satisfied and 
the variables u’ and wr are replaced by the single 
variable $_ Finally, using the Boussinesq approxi- 
mation and dropping the primes, the following cou- 
pled pair of equations are obtained: 

(10) 

a2e i a+ a6 i a+ ae 
+-__----__ 

(7Z2 r aZ ar r i?r az (11) 

where Ra* is the modified Rayleigh number defined by 

Ra* = g~ATr~K/(~v). (12) 

‘Ihe modified Rayleigh number expresses how vigor- 
ously the flow is thermally driven compared to how 
firmly motion is resisted and can be given as a 
product of three nondimensional parameters as 
follows : 

Ra* = Gr Pr Da, 

Ra* being used for brevity and simplicity. 

(13) 

The horizontal boundaries are nonconducting and 
the inner vertical boundary is held at a constant elevated 
temperature, Ti. In the perturbation solution, the 
outer boundary is held at a constant lower 
temperature, T,, In the numerical and asymptotic 
solutions, the outer vertical boundary is allowed to 
convect to the ambient at T, by virtue of a constant 
heat transfer coefficient, h. As the vertical annulus is 
defined to be an enclosure, or sealed, the edges of the 
enclosure must constitute a streamline. Hence, the 
boundary conditions may be stated mathematically as 

$ (boundaries) = 0, 

?H 
Z = 0 at (z = 0 and A, all r), 

(14) 

@(l?, zf = 1, 

fI( 1, z) = 0 (perturbation solution), 

ae _= - 
& 

Bi 0 (asymptotic and numerical solutions), 

where 

Bi = hr,/k (15) 

and h is a heat transfer coefficient for convection 
outside the cylinder and k is the stagnant thermal 
conductivity of the porous medium. 
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Solutions to the governing equations are desired 
over the full range of practical values of the parameters 
of the problem. Hence the radius ratio varies from 0.1 
to 0.9 and the aspect ratio varies from 0.5 to 20. The 
range of the modified Rayleigh number is determined 
using experimental data previously collected. Fournier 
and Klarsfeld [21] report that the permeability of 
fibrous insulation varies from 2 x lo-‘* to 200 x 
10-‘“m’. They also report that an effective thermal 
conductivity, which includes the effects of gas con- 
duction, solid conduction and radiation varies from 3.2 
x lop2 to 5.0 x tO-ZW-‘m~~“K-“. Using these 

values for the ~rmeabiI~t~ and thermal conductivity, 
the well known properties far air, insulation thick- 
nesses up to l/3 m, and temperature differences up to 
70K, the modified Rayleigh number may vary as 
follows in practical insulation applications : 

O<Ra* i X50. (16) 

Equations (10) and (11) are nonlinear, coupled 
partial differential equations. After failing to obtain an 
exact analytical solution, approximate analytical and 
numerical results were sought. Perturbation tech- 
niques valid for low Rsyfeigh numbers were attempted 
to garner jnformatjon when the geometry approaches 
limiting values and numerical difficulty is encountered. 
An asymptotic solution was obtained that is valid 
when the enclosure is tall and narrow for very high 
Rnyleigh numbers where, again, numerical difficulty is 
encountered. Finally, the gaps were bridged with 
numerical results. These solutions will be described in 
the ensuing sections. 

3. PERTURBATiON SOLUTION 

In the problem at hand, a parameter perturbation 
1223 is performed in which the modified Rayleigh 
number is perturbed from zero, a vahre for which the 
full problem solution (the log iaw conduction profile) 
is known. To do this, 0 and $J are assumed to be of the 
form 

These series are substituted into the governing equa- 
tions (IOf and (I 1) and the boundary conditions. 
equations (14). As the modified Rayleigh number tends 
to zero ail terms not containing O,, and go drop out. 
The fotlowing pair remains: 

The solutions to the above pair are 

$0 = 0, (21 t 

fi, = fn r/In rf. (22) 

Higher order terms are generated similarly. t/I 1 was 
obtained by standard separation of variables tech- 
niques. A homageneous solution is obtained and the 
inhomogeneous term was developed by inspectian. 11/t 
is given by 

where 

p=ir.=y, 

and 

The equation for #, is 

d% I f?ji, 2N, 
+l=p_- 

32 f c’z (7r 
r2-J) 

0, was obtained using the same techniques used far IG, I 
and is given by 

0, = (In rY 
’ .+ 

C 

A:A 

\ 
-2+4 

> 

x [- cash (&a) - tanh (&A) sinh (&,z)] 
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Here the constants pn, j$,, E,, B,, A,, C3,,, C.,, and CT,, 
are functions of 9 and A. Solutions for 8, and lfiZ were 
not obtained because the solutions for 8, and @I are so 
complex that the equations for e2 and $2 would be 
extremely difficult to solve. Additionally, it was found 
to be very expensive to obtain the eigenvalues and to 
sum the series in equations (23) and (28). The extrapo- 
lation to I,&~ and 8, indicated that we couldn’t afford to 
perform the computations even if we had the soIutions. 
The velocities, u1 and wl, can be obtained using 
equation (19) and are given, together with the con- 
stants in equations (28) in ref. [24]. 

The Nusselt number, Nu, defined as follows: 

pJu = Q ‘*M -=lnq 
Q 

(29) 
cond 

is one when calculated using the first two terms of 
equation (17). Thus, the first order contribution to the 
heat transfer is zero because of the vertically anti- 
symmetric nature of 0,. This has been observed in the 
past [20] with the result that at low Rayleigh numbers, 
the heat transfer varies at least quadratically with 
Rayleigh number. 

The absence of Nusselt number results for the 
perturbation solution led to a comparison of tempera- 
ture fields to assess the accuracy of the method. The 
numerical results were taken as ground truth. Since the 
cost of a complete error analysis was untenable, two 
cases were considered : Ra* = 30 and Ra* = 50 for Bi 
= x, 7 = 0.5 and A = 5. At Ra* = 35 and r = 0.65 
(where the errors are representative averages of the 
field), the error varies from O.OOOSP:, at z = 0.15 to SO,:, 
at 2 = 2.5. At Ra* = 50, the error varies from 1.3% at 
z = 0.15 to 15.10/, at z = 5. It appears, therefore, 
that the perturbation solution is accurate enough for 
engineering purposes below Ra* = 3.5. 

4. ASYMPTOTIC SOLUTION 

For a vertical annulus completely filled with a 
porous medium the governing equations are greatly 
simplified as we let A -P z. Indeed, this should be a 
valid approximation for many practical insulation 
systems. Because the height of the annulus becomes 
infinite, there can be no change in fundamental 
quantities with height. All derivatives with respect to z 
go to zero. The governing pair, equation (10) and (1 l), 
becomes 

13 r&l, --O= ri?r & 
0. 

The appropriate boundary conditions are : 

1//,4h 4 = 0, 

(31) 

$,4(1, z) = 9 

@A@?, 2) = 1, 

e~(l, Z) = ;$(l, z). (32) 

The heat flow boundary condition at r = 1 is more 
general than that posed in the ~rturbation problem. 
The boundary conditions stated in equations (32) 
reduce to the perturbation boundary conditions in the 
limit as the Biot number tends to infinity. The 
temperature of the outer cylinder now assumes a value 
greater than zero depending upon the internal flow 
and the Biot number. The solutions to equations 
(30)-(32) are as fotlows: 

II/ = + Ra*Bir2 ___-.-._ 
A 2(1 - Bilnv) 

[ 1 lnr-i +C,g+O,, 

(33) 

8, = l_~ilnrlI-Bilnr+l] (34) 

2 

C, = 
- Ra*Bi 

$lnp-$+i 

1 - Bi In tj ~ 92 - 1 

Using the definition of $, given by equation (9), M‘~ can 
be obtained. The result is 

Ra* Bi In r 
w,* = - 

1 - Bilnq 
- C,. (37) 

Using wA and 8,., it is possible to estimate the 
convective contribution to the heat transfer in annuli 
with a large but not infinite aspect ratio, A. There are a 
number of ways in which this can be done. This work 
employs a method successfully introduced by Bat- 
chelor [23]. In short, the technique assumes that the 
nondimensional convective contribution to heat trans- 
fer in “tall” annuli is proportional to the convected 
energy, i.e. 

Qc,=Y I J‘ waea Zardr (38) 
‘I 

where the constant of proportionality, y, is to be 
determined by comparison to other solution tech- 
niques or experimental data. Evaluation of the integral 
is complicated but the result obtained, after substitut- 
ing into the definition of the Nusselt number is 
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for Bi < x. 
Equation (40) readily reduces to equation (39)as the 

Biot number tends to X. The relations for Nu, are 
valuable as they allow prediction of heat transfer from 
simpte analytical expressions for Large aspect ratio 
geometries. The shape of Nu, is very similar to the 
shape of the Nu (q) plots presented in the numerical 
results section, indicating good qualitative agreement. 

Quantitative agreement is obtained by using least 
squares methods in comparing Nu, to numerical 
solution results. Least square methods enable a selec- 
tion of a value for 1~ which minimizes the variation of 
the Nusselt number. This procedure has been applied 
to over 50 numerical results for Nusselt numbers of 5 
and greater and ;’ has been determined to be 0.57. 

The Nusseh number results obtained from the 
asymptotic and numerical schemes have been com- 
pared for ah rf 2 1. For the asymptotic results, the 
maximum error is observed for the minimum values of 
q and the smaller values of A at all Ra*. The results 
agree to better than 1 I:/: for all cases where both q > 
0.1. Almost all results agree to within 5%. Thevariation 
of error is illustrated for the representative case of Ra* 
= 100 and A = 5 as follows - the error varies 
smoothly with r~ from 0.596 at rt = 0.9 to 5.3% at n = 
0.2. 

This work utilizes the two previously discussed 
analytic &Torts as well as a tinite difference scheme to 
obtain resuhs for heat transfer as a function of 
geometry, Biot number, and modified Rayleigh num- 
ber. Finite differences were emplayed because the 
boundary conditions were unambiguous and smooth 
and the finite difference method is known to be 
successful on very similar problems, specifically na- 
tural convection in enclosures and natural convection 
in porous media filled enclosures [ZO]. 

5.1, The finirr dijjermce upproximution scheme 

Equations (10) and ( t 1) were formutated in central 

difference form. A regufar grid was used. Boundary 
mirroring was used to satisfy the adiabatic conditions 
and second order one-sided differencing was used to 
calculate temperature gradients on the vertical boun- 
daries. This formulation has been utilized in a suc- 
cessive over-relaxation scheme. In this scheme, 0 and $ 
are given initial approximate values and the scheme 
solves for U and II, successively until a determined 
residual is reached. 

In the investigation described above, runs using 
grids as large as 50 x 50 were sometimes used, but for 
the bulk of the output, grids between 16 x 15 and 30 x 
30 were used. F&en exploratory cases indicated that 
accuracy is determined by several factors besides grid 
size. The values of A, q, and Ra* all combine in a 
complex manner to determine the grid size required to 
obtain a given accuracy. Most results at Ra* < 50 were 
accurate to within about 2%; the more inaccurate runs 
are those where the Nusselt number peaks versus n. 
Results at Ra* = 150 are within about 8% of the 
converged value, and again, only the results near the 
maximum Nusseh number are Less accurate, though all 
are accurate to at least 12%. All results at Ra* = 100 
are accurate to within g%_ The series of runs was 
proh~b~tiveiy expensive, and the results shown are 
converged to the maximum limit ailowed by our 
budget. 

The convergence properties of the successive over- 
relaxation scheme were investigated by fixing q, A, Ra* 
and the grid size and varying the convergence para- 
meter, RESMAX. RESMAX, the maximum norma- 
lized change in the temperature on the stream function 
over every grid point is given by 

When the change between the new and old values of 
the temperature or stream function normalized with 
the old value, is smaller than RESMAX, then the 
convergence criterion is satisfied. The temperature at 
an arbitrary grid point in the upper center of the 
enclosure was converged when RESMAX was equal to 
1.0 x 1O”4. Thus in all subsequent runs RESMAX 
was set to 1.0 x lo-’ and the temperature and stream 
function at every grid point were forced to satisfy the 
convergence criterion. 

Figures 2-5 display results of the numerical scheme 
for a Biot number of infinity. These results are 
tabulated in ref. [24]. The Nussett number is presented 
as a function of radius ratio, 17, with the aspect ratio. A, 
as a parameter for Rayieigh numbers of35,50,100 and 
150. Numerical results are shown as solid points 
while asymptotic results are shown as open points. 
Asymptotic results are shown for A 2 2. The asymp- 
totic approximation is invalid for small A. Indeed, it is 
surprising that the asymptotic results agree as well as 
they do even at A = 2. Due to budget limitations (the 
results shown herein cost several thousands of dollars) 
the numerical results are not as plentiful as is desirdbk. 
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This is somewhat ameliorated by the curve fit pre- 
sented later. 

In each graph, the Nusselt number tends to one, the 
pure conduction value, as q tends to 0 and 1. The 
former result is due to the fact that as q goes to zero, the 
area for heat liberation tends to zero. The latter result 
is due to the fact that as q goes to unity, the conductive 
resistance goes to zero. The heat transfer increases with 
modified Rayleigh number. This must occur because, 
as previously described, the modified Rayleigh number 
is the driving force for convective heat transfer. The 
Nusselt number dependence on aspect ratio A is 
presented most clearly for Ru* = 35. For q’s near 0 and 
1 the Nu dependence on A appears as a fairly simple 
inverse power law dependence but for q between 0.2 
and 0.6 the dependence is more complex. In this region, 
Nu increases and then decreases with decreasing A for 
a given q, so that the 4 for which Nu is a maximum for 
each A moves from about q = 0.2 for rl = 10 to q = 
0.45 for A = 0.5. This result may be explained by 
considering the flow geometry. For smaller A, the 
pathlines are long in the horizontal direction and short 
in the vertical direction, where heat transfer occurs. 
Long pathlines make the flow rate low and decrease 
the convective heat transfer. As A gets small, then, Nu 
goes to unity. However, as A gets large. the convective 
heat transfer approaches a limit because fluid rising 
next to the inner wall cannot get hotter than the inner 
wall itself. Conduction increases with increasing A so 

that as A gets very large Nu goes to one once again. 
Hence, Nu vs A must go through a maximum. 

Figures 6 and 7 depict streamlines and isotherms 
generated by the numerical scheme for Ra* = 100, 
A = 2.0 and q = 0.2. The isotherms show little 
resemblance to the vertical isotherms of the con- 
duction solution or the nearly vertical result of the 
~rturbation solution. As in the perturbation solution, 
the streamlines encircle a point that is shifted to the 
outside of the annulus. However, the streamlines are 
no longer symmetrical about z = A/2. The vortex or 
central flow point is shifted noticeably above z = A/2 
and there is a decidedly higher flow rate in the upper 
outside corner and the lower inside corner. The 
symmetry of the perturbation solution forced the 
vortex to be centered along z = A/2. Additional terms 
in the perturbation solution, if well behaved, should 
move the vortex center upward and outward to its 
correct position. The upper inside and lower outside 
regions are relatively stagnant. As fluid rises along the 
inner vertical wall and warms, a higher pressure region 
develops in the upper inside corner. The flow must turn 
toward the outside away from the corner, leaving a 
large fairly stagnant region. As the flow approaches the 
outside wall it cools and descends abruptly. Another 
high pressure stagnant zone develops in the lower 
outside region and the flow turns toward the inside as 
it falls. In the lower inside region the fluid warms and 
abruptly begins to rise. The isotherms depicted in Fig. 
8 can be explained with the aid of the flow. In the upper 
region the flow affects the conduction temperature the 

NU 

1.1 

1 

= 35 

FIG. 2. The variation of Nusselt number with radius ratio for 
Rat = 35. 

NU 
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‘I 

FE. 3. The variation of NusseIt number with radius ratio for 
l&z* = 50. 
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FK. 4. The variation of Nusselt number with radius ratio for 
Ra* = loo. 

FIG. 5. The variation of Nusselt number with radius ratio for 
kJ* = 150. 

same way blowing from the inner to outer wali would, 
The isotherms must shift toward the outside. Where 
the conduction profile would have given 0 = 0.80, 
blowing gives a iarger value, for example 0.85 or 0.9. 
The temperature field in the lower region of the 
enclosure resembles blowing from the outer to inner 
wall. and the isotherms shift toward the inner wall. 

The numerical scheme allows either the convective or 
the isothermal boundary condition to be applied at the 
outer vertical boundary. The results for an isothermal 
outer boundary have been presented. Cost consider- 
ations have limited the number of finite Not resutts, 
but as there are more than fifty of these results, there 
are enough to obtain a good idea of the effecects. The 
majority of the results are at Biot numbers of 30 or 
larger, where the Nusselt number is more than ninety 
percent of its value for Bi = 22. Lower Biot number 
results were extremely expensive, partly because the 
algorithm’s first guess was poor in this region and 
partly because the algorithm’s convergence properties 
were weaker with the finite Biot number boundary 
condition. The results indicate that decreasing the Biot 
number decreases the Nusselt number. An infinite Biot 
number, or an isothermal outer wall, implies an infinite 
heat transfer ccdcient on the outer vertical wait. An 
infinite h is required to keep the entire wall at the 
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FIG. 6. Streamlines for q = 0.2, A = 2, and Ra* = 100. 
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FIG. 7. Isotherms for q = 0.2, A = 2, and Ru* = 100. 
(1 - QJNu. = Bi e 

lnij - a 
(42) 

temperature of the surrounding fluid, the fluid outside 

of the vertical annulus. As h decreases from infinity, 
the outer wall grows warmer because it does not 
transfer heat to the surrounding fluid as well. An 
increase in the outer wall temperature reduces the 
effective modified Rayleigh number in the enclosure 
and therefore must decerease the heat transfer because 
the Rayleigh number is the parameter which drives the 
convective heat tranfer in the enclosure. As the outer 
wall warms up when the Biot number decreases from 

infinity, it does not remain isothermal. The outer wall 

1.4 I I I 

0.6 I I 1 

0 0.25 0.50 0.75 1.00 

lIEi 

FIG. 8. The variation of the Nusselt number with the inverse 
of the Biot number. 

warms more near the top of the annulus because the 

fluid in the upper region inside the annulus is warmer 
and transfers heat to the outer wall more strongly as it 
vigorously impinges on the surface. This result causes 
the outer boundary as well as the fluid in the annulus 
to be thermally stratified. Thermal stratification op- 
poses the fluid motion in the enclosure. 

The dependence of the Nusselt number on the Biot 

number is illustrated in Fig. 8. The independent variable 
is l/Bi. The decrease in Nusselt with Biot number is not 
appreciable until the Biot number is less than 50. Thus, 
for Biot numbers of 50 to r%3, the heat transfer is very 
near the isothermal outer wall heat transfer. For Biot 
numbers less than about 4, Nu is less than 1 because it 
is still normalized with the isothermal outer wall 
conduction solution. As the Biot number gets very 
small, it decreases the heat transfer less and less 
because the temperature difference across the en- 
closure is reduced resulting in a decrease in the flow. 

Thus, the internal heat transfer tends to the pure 
conduction solution as the Biot number is decreased. 
Additionally, stratification becomes more pronounced 
which further inhibits flow. 

A method has been developed which uses the Bi = 
w numerical results to predict the Bi < x numerical 
results to within about 2%. The heat transfer in the 
annulus can be expressed in nondimensional form as 

where Nu J is the Nusselt number for an infinite Biot 

number evaluated at a modified Rayleigh number 
reduced to account for the increased outer wall 
temperature, 0V Finite Biot number results can be 

approximated to within 2% using this relation by 
following the procedure outlined below. 

Choose q, A, Ra* and Bi. After guessing 0,, reduce 

the modified Rayleigh number to account for the 
increased outer wall temperature with the following 
relation : 

RaL = Ra* (1 - 0,). (43) 

Using Ra,*,,, interpolate in the infinite Biot results for a 
Nusselt number prediction. Use this Nu, value to 
derive a new 0, from equation (42). With the new Q,, a 
new reduced modified Rayleigh number can be ob- 
tained and the process can be iterated until 8,, Ra,*,, 
and NM, converge. NuBi is then calculated using 

NuBi = NUT (1 - 0,). (44) 

This has been done and is shown as the open points on 
Fig. 8. The results converged after only 3 iterations to 
values within 2% of the numerical results. In fact there 
is so much overlap that the open points (lower) can 
barely be discerned from the solid points. 

Least squares methods have been used to approxi- 
mate the Nusselt number’s dependence on 1, A and 
Ra* with simple functions for design purposes. Both 
the A and Ra* dependence were fit well to simple 
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power law functions. The q dependence was fitted to 

a, [q(l - Z.l)l”‘e”‘“. (45) 

The specific function is given in its entirety in the 
Conclusions section. Results for these correlations 
have been compared to the numerical results. The 
agreement is always within 5%. 

Some results from the asymptotic solution (open 
points) are compared to numerical solution results in 
Figs. 2-5. The asymptotic solution is accurate to 6% 
for all 11 greater than 0.3 and A > 2. The asymptotic 
solution is poor at smaller ‘I, though it tends to the 
appropriate limit as q + 0 but allows reasonable 
results for T 2 0.3. For A < 2, the asymptotic solution 
diverges from the numerical results. This is to be 
expected because A < 2 violates the basic assumptions 
in the approximation. 

6. CONCLUSIONS 

The governing equations for free convection in 
vertical cylindrical annuli were formulated in differen- 
tial form as the first step towards obtaining useful 
information regarding heat transfer in thermal in- 
sulations. The governing equations were then reduced 
to a coupled pair of nonlinear equations involving a 
single parameter, the modified Rayleigh number. The 
application of the boundary conditions introduced the 
radius ratio, the aspect ratio and the Biot number and 
the problem was then one involving five parameters. 
Because the critical modified Rayleigh number is zero, 
and solutions were sought for modified Rayleigh 
numbers between 0 and 150. 

Perturbation methods were applied and yielded first 
term corrections for the stream function and tempera- 
ture to the pure conduction case. Unfortunately, 
higher order terms were too difficult to obtain and the 
first term corrections could not give results for Nusselt 
number due to antisymmetry about z = A/2. However, 
useful results for the flow fieId were obtained. 

Asymptotic methods yielded useful results for A 2 5 
and v > 0.2. Qualitative agreement was not obtained 
for q < 0.2 because of the assumptions required for the 
asymptotic technique. However, as many practical 
problems involve an A 2 5, the method’s results are 
quite useful. 

Numerical methods generated results for a wide 
range of 7, A and Ra*. Some results for Biot numbers 
between 1 and 500 were also obtained. Simple cor- 
relation equations were developed to relate the Nusselt 
number to q, A and Ru*. A simple iterative technique 
for obtaining results at finite Biot numbers from results 
for Bi = XL was presented. 

Several results of the present work display some 
provocative similarities to two important preceding 
works. The Nusselt number results of Burns and Tien 
[20] for concentric horizontal annuli show a very 
similar radius ratio dependence. The curve fit for the 
numerical results has a nearly identical form despite a 
great difference in Row field between the two problems. 
However, many of the constants are very different. The 

Nusselt number’s dependence on Ra*, though, is an 
exception. In both problems, the Nusseft number 
seems to go as Ra *2 at the lower Rayleigh numbers but 
as low as Ra*‘.’ at the higher Rayleigh numbers. 

The results of Batchelor [23] for free convection of a 
simple fluid between vertical plates are similar to those 
of the present problem in several respects. In both 
works, the first term of the perturbation solution did 
not contribute to heat transfer, and in both problems, 
the Rayleigh or modified Rayleigh number depen- 
dence goes as the second power for the small (less than 
50) Rayleigh numbers. 
The preceding work leads to the following 
conclusions: 

(1) The Nusseh number, and therefore the heat 
transfer, in vertical concentric cylindrical annuli con- 
taining porous insulation depends on radius ratio, 
aspect ratio, modified Rayleigh number and Biot 
number, all nonlinearly. 

(2) The dependence of the Nusselt number on the 
modified Rayleigh number is nearly quadratic for Ra* 

2 50, as was expected when the terms in Ra* in the 
perturbation solution did not contribute to heat 
transfer by virtue of their antisymmetry about z = A/2. 

(3) For a given Rayleigh number, a critical height 
occurs at which the Nusselt number is a maximum. 
This occurs because the Nusselt number is normalized 
with conduction, Ajln q, Conduction increases linearly 
with A, while convection approaches a limiting value 
and therefore increases much more slowly for larger 
A’s, 

(4) A relation of the following form fits the Bi = x 
results well : 

Ra* 

forA>l,O<Ra* < 150andallq (46) 

a, = 0.2196, 

a, = 1.3337, 

a3 = 3.7020, 

ti,+ = 0.92958, 

us = 1.1682. 

The correlation for the Nusselt number can be exten- 
ded to the use where Bi < ,J; by using the procedure 
outlined in equations (42)-(44). Results were shown to 
be accurate to about 2%. 

(5) For Biot numbers of 50 or larger, the heat 
transfer is within 5% of the Bi = x value. However, 
Biot numbers as low as 0.05 are required to simulate 
natural convection on the outer vertical wall for all 
practical applications. 

(6) The Nusselt number is a maximum for a given A 
and Ra* at a particular q. This result is due to the fact 
that Nu must go to unity both as q goes to zero, 
because the area for heat liberation tends to zero, and 
as q goes to one, because the conductive resistance 
tends to zero. A maximum must therefore occur at an 
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intermediate value of q. The value of q at the maximum 
Nusselt number is observed to be (g),,, = 0.25 for A > 
1 while (q),,, increases continuously with decreasing A 
for A < 1. 

(7) For Bi = 7~. no critical insulation thickness 
exists at which heat transfer is a maximum or mini- 
mum. Despite the existence of maximum Nuwlt 
numbers, heat transfer does not peak because of the 
variation of the conduction solution with q. For Biot 
ncmbers less than infinity, a maximum is expected to 
exist as occurs in the well known problem with closed 
cell or solid insulation. 

Further studies should utilize a more sophisticated 
algorithm to enable investigation of problems with 
more realistic boundary conditions i.e. lower Biot 
numbers. The temperature dependence of the proper- 
ties should also be taken into direct consideration. 
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CONVECTION THERMIQUE DANS UN ESPACE ANNULAIRE VERTICAL EMPLI DUN 

MILIEU POREUX 

R&un&--On Ctudie la convection thermique dans un espace annulaire vertical et concentrique, empli dun 
milieu poreux. Des resultats numeriques sent present& pour des espaces moderis et pour des differences de 

temperature elevees. Des risultats de perturbation pour les variables de champ sent fournis pour tous les 
espaces de cylindre et pour des faibles differences de temperature. Une solution as~mptotique est don&e qui 
est valabb pour des grands cyhndres et n’impnrte quetle di&Srence de ~m~ratur~. Ies resultats sont en bon 

accord la ou il J a ~co~vre~nt des variables ~ud~~ndantes. De plus ii y a un accord quantitahf avec ks 

r&hats connus pour bs cyfindres concentriques hor~~ontauX et les spheres remplis avec un milieu poreux, et 

la d~~nd~~ au rapport de forme conduit ri des ph&nomenes Mhmants. 

KQNVERTIVER W~RMETRANS~~~T KN EINEM MIT PQRCiSEM MATERlAL GEFOLLTEN 
SENKRECHTEN ZYLINDRISCHEN RINGSPAL 

2usammenfassung-Es wurde der konvektive Wdrmetransport in einem mit pm&en Material gefiillten 
vertikalen Ringspalt untersucht. Nurn~ris~~e Ergebnisse fur den W~rmetr~sP*rt in zylindrischen R&men 
m-it ma&gem Wandabstand und hoheo Temperaturuntersch~edenwerden angegeben. StGrungs16sungen fiir 
die FeldgriiRen werden ermitteh, die fur alle Wandabsttide bei kleinen Temperaturunterschieden gultig 

sind. Eine asymptotische Losung wird angegeben, die fur sehr groRf: Zylinder und alle 
‘~emperaturd~~e~nz~ giiltig ist. SclrlieBhch wird diese Vielzahl van Losungen durch eine Ausgleichskurve 

~u~mmengefa~t, Es wurde gefunden, da8 die Ergebnisse in guter ~~rei~stimm~u~ sind, wo sick ihre 
unabh~ngigen Variablen ~~~a~~~ AuBerdem besteht quatitative ~~r~~nst~rn~~~ng mit ~~~~t~~chten 
Ergebnissen fur ebene ko~~entri~he Zylinder und mit porosem Material g&he Kugeln, obwohl die 

Abb~gjgkeit vom L~~en~urchmes~r-Verh~I~is zu einigen interessanten Pblnomenen fiihrt. 

KOHBEKT~BHbI~ T~~~~~~~~~Q~ B B~~~KA~bHbIX ~~~~~~P~~E~K~X 
KOJIbHEBbIX KAHAJTAX, 3AIIOJIHEHHbIX llOPHCTOr?t CPEfl0t-i 

AHHorauHn-DpoBeaeHo HccnenoBaHHe KoHaeKTHBHoro Tennonepewoca B KoHueHTpH4ecKoM BepTHKa- 

JtbHOM KOnbueBOM KaHane, 3t%~~~Nk%fNOhf IlOpHCTbIM 8emecTsoM. Ywsrcrcme pe3ynbTarbr no 

~~~~0ne~Hocy npnBe~enb1 a,Ts cny4aeB He60,~bm~X 3a3OpOB MeTay ~~~~~~paMU U 6OnbmHX 

paaHocTeii TeMnepaTyp. IlpencTasnwbt pacc4HTaHHbte n0 TeOpHH t303M)‘meHHir nO;t, OCHOBHbtX 

nepeMeHHbIX, FOTOpbie npHMeHHMM LtJHl JtbJ6blX 3a3OpOB Mex.By UHJtHHUpaMH H He6OJtbmHX 
pa3HocTeeii TeMnepaTyp. ,QaHo TaKwce BcHMnToTrwecKoe pemeltae, cnpaBennwBoe aflB uenminpo~ 

(iOJtbmo& BbtcoTbi npH _Bm6,X pa3HoCTRX TeMnepaTyp. KpoMe TOrO, BCR CoaoKynHOCTb pemeHKii 

~o~~Bep~~e~c~ Co~~a~e~~C~~ C 3Kcrre~~~e~iran~~io~ KpuBo6. IIoKa3aeo, 41‘0 pe3ynbTaTM Xopomo 
Cor.aacyioTCa B TOM cngsae, Korna HMeeT ~ec-ro ~a~o~eH~e ~~e3aB~c~Mb!~ riepe~e~~~x. KpoMe 
rwo, nony4eHo Ka~effae~uoc cor.nacHe c n~BecT~~~H pe3yJrbTaTaMe ajrst rop~~oHT~b~b~X KoH- 

ueHTpHHeCKHX u~~~~~poB M C&p, 3~~~O~~eH~bIX nOpHCTOtl Cpenoii, npH4CM 3aaHCHMOCTb npouecCa 
01 OTHOmeHHB panrtyca X BbICoTe IW?RHJlpa IIpEROJWT X HCXOTop6rM ~H~~peCHbI~~ XBlleKftRM. 


